首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1459篇
  免费   24篇
  国内免费   6篇
化学   913篇
晶体学   2篇
力学   14篇
数学   185篇
物理学   375篇
  2019年   11篇
  2016年   17篇
  2015年   14篇
  2014年   19篇
  2013年   34篇
  2012年   47篇
  2011年   45篇
  2010年   37篇
  2009年   28篇
  2008年   62篇
  2007年   47篇
  2006年   65篇
  2005年   42篇
  2004年   35篇
  2003年   28篇
  2002年   43篇
  2001年   25篇
  2000年   32篇
  1999年   26篇
  1998年   31篇
  1997年   22篇
  1996年   24篇
  1995年   34篇
  1994年   29篇
  1993年   25篇
  1992年   22篇
  1991年   21篇
  1990年   20篇
  1989年   15篇
  1988年   25篇
  1987年   16篇
  1986年   20篇
  1985年   23篇
  1984年   22篇
  1983年   13篇
  1982年   15篇
  1981年   26篇
  1980年   17篇
  1979年   14篇
  1978年   31篇
  1977年   22篇
  1976年   26篇
  1975年   20篇
  1974年   26篇
  1973年   25篇
  1971年   10篇
  1970年   20篇
  1967年   15篇
  1966年   11篇
  1965年   17篇
排序方式: 共有1489条查询结果,搜索用时 437 毫秒
21.
Double-stranded (ds) calf thymus DNA (0.4 mM), excited by 20 ns laser pulses at 248 nm, was studied in deoxygenated aqueous solution at room temperature and pH 6.7 in the presence of a sodium salt (10 mM). The quantum yields for the formation of hydrated electrons (phi c-), single-strand breaks (phi ssb) and double-strand breaks (phi dsb) were determined for various laser pulse intensities (IL). phi c- and phi ssb increase linearly with increasing IL; however, phi ssb has a tendency to reach saturation at high IL (greater than 5 X 10(6) Wcm-2). The ratio phi ssb/phi c-, representing the number of ssb per radical cation, is about 0.08 at IL less than or equal to 5 X 10(6) Wcm-2. For comparison, the number of ssb per OH radical reacting with dsDNA is 0.22. On going from argon to N2O saturation, phi ssb and phi dsb become larger by factors of approximately 5 and 10-15, respectively. This enhancement is produced by attack on DNA bases by OH radicals generated by N2O-scavenging of the photoelectrons. While phi ssb is essentially independent of the dose (Etot), phi dsb depends linearly on Etot in both argon- and N2O-saturated solutions. The linear dependence of phi dsb implies a square dependence of the number of dsb on Etot. This portion of dsb formation is explained by the occurrence of two random ssb, generated within a critical distance (h) in opposite strands. For both argon- and N2O-saturated solutions h was found to be of the order of 40-70 phosphoric acid diester bonds. On addition of electron scavengers such as 2-chloroethanol (or N2O plus t-butanol), phi dsb is similar to that in neat, argon-saturated solutions. Thus, hydrated electrons are not involved in the chemical pathway leading to laser-pulse-induced dsb of DNA.  相似文献   
22.
    
Zusammenfassung Mit Hilfe der Dünnschicht-Chromatographie lassen sich Gemische von Tetraorganozinnverbindungen, welche keine polaren Gruppen enthalten, auftrennen und identifizieren, sofern sie sich entweder in der Zahl der Phenylgruppen pro Molekel oder in der Natur des aliphatischen Restes (Alkyl oder Allyl) unterscheiden.Für die analytische Dünnschicht-Chromatographie eignet sich als Fließmittel eine Mischung von 80 Vol-% Hexan und 20 Vol-% Benzol, für die präparative Schicht-Chromatographie (mit Mehrfachentwicklung) je nach Trennproblem reines Hexan oder Hexan-Benzol-Mischungen mit 10 bis 20 Vol-% Benzol.In diesen Fließmitteln hängen die Rf-Werte innerhalb der Verbindungsreihen der Phenyl-isobutyl-stannane Ph x SniBu4–x und der Phenyl-allylstannane Ph x SnAll4–x linear mit der Zahl der Phenylreste x zusammen und fallen mit steigendem x. Die sie verbindenden Geraden schneiden sich bei x=4 (Tetraphenylzinn).Zur Anfärbung von Organozinnverbindungen eignen sich Dithizon und Silbernitrat. Durch Besprühen der Platten mit Dithizon lassen sich auf Grund der entstehenden Farben Tetra-, Tri- und Diorganozinnverbindungen sofort unterscheiden. Mit Silbernitrat lassen sich Allyl-Zinnverbindungen und Polystannane von Alkylzinnverbindungen unterscheiden; Tetraphenylzinn wird dabei nicht angefärbt.
On the thin-layer chromatography of organotin compounds
With the aid of thinlayer chromatography mixtures of tetraorganotin compounds containing no polar groups can be separated and identified if they differ in the number of phenyl groups per molecule or in the nature of their aliphatic residues (alkyl or allyl).For analytical purposes mixtures of 80% hexane and 20% benzene by volume are suitable as mobile phase. For preparative purposes (requiring multiple development) pure hexane or hexane containing 10 to 20% benzene by volume are best suited as mobile phase, where the amount of hexane depends on the problem of separation at hand.The Rf values of the mobile phases vary linearly with the number of the phenyl groups x and decrease with increasing x. The straight lines connecting the Rf values cross at x=4 (tetraphenyltin).Dithizone and silver nitrate are suitable spray reagents for organotin compounds. By spraying the plates with dithizone tetra-, tri-, and di-organotin compounds can be immediately distinguished on the basis of the ensuing colourations. With silver nitrate allyltin compounds and polystannanes can be distinguished from alkyltin compounds; tetra-phenyltin is not coloured by this reagent.
  相似文献   
23.
(Extraction of alkali on alkaline earth metal ions with (sym-dibenzo-14-crown-4-oxy)- and (sym-dibenzo-16-crown-5-oxy)-carboxylic acids.)The extraction of lithium, sodium, potassium, calcium and some other metal ions with dibenzo-4-crown-4-oxy- and dibenzo-16-crown-5-oxycarboxylic acids containing the groups -CH2COOH, -(CH2)2COOH, -(CH2)3COOH, -CH(C2H5)COOH and -CH(C4H9)COOH was studied. The extraction increases as a function of the lipophilic character of the carboxylic acid group. Calcium, barium and strontium ions are better extracted than Li+, Na+ and K+; there are only small differences among the alkaline earth metal ions. Evaluated from the extraction data, the composition of the extracted species was 1:1 (metal/ligand) for Li+, and 1:2 for CaCa2+; Na+ and K+ favour the formation of 1:2 complexes with dibenzo-14-crown-4-derivatives bbut 1:1 complexes with dibenzo-16-crown-5-oxy-carboxylic acids. The dependence of the distribution ratio on pH does not provide unequivocal evidence for the composition of the extracted compounds.  相似文献   
24.
Research in the field of low-molecular weight, oligomeric and polymeric α,ω-diisocyanatocarbodiimides and -polycarbodiimides has been fruitful, not only in connection with these compounds themselves, but also—as so often happens in chemistry—with quite different problems. Novel synthetic methods, discoveries concerning the properties of low-molecular weight carbodiimides and phosphane imide derivatives, as well as results on the fragmentation reactions of four-membered heterocyclic compounds containing oxygen, phosphorus, and nitrogen, and a better understanding of the diisocyanate polyaddition process are among the many by-products of this research. The “high- and low-temperature formation” of polycarbodiimides and the homogeneous and heterogeneous catalysis of this process are described, and the fundamental importance of four-membered ring fragmentation mechanisms resulting in the formation of phosphane imide derivatives is outlined. Interesting building blocks for the diisocyanate polyaddition and polycondensation processes can be synthesized by many derivatization reactions of oligomeric and high-molecular weight polycarbodiimides and polyuretonimines. The in situ production of polycarbodiimides via matrix reactions in flexible polyurethane foams leads to a cellular arrangement of the material due to the pronounced symmetrical growth processes. Combination-foams with increased carbonation tendencies are formed in this way. Attention is drawn to several industrial applications of α,ω-diisocyanatopolycarbodiimides, of high-molecular weight cross-linked polyuretonimines, and of polycarbodiimide foams.  相似文献   
25.
This paper deals with the separation of alkanes, naphthenes, and aromatic compounds in naphtha and reformate, on a newly developed apolar high resolution GC column. The selectivity of this apolar phase has been compared with those of squalane, DB-1, and SE-30. A total of 95 hydrocarbons were reliably identified, mostly by GC-MS. Repeated measurements of Kováts retention indices are presented as evidence for the reproducible manufacture of fused silica columns coated with this phase.  相似文献   
26.
Summary. The synthesis of an oxidative major metabolite of bis(2-ethylhexyl) phthalate is described. The target molecule and its ring-deuterated isomer were obtained via acylation of the appropriate -hydroxy benzyl ester or the corresponding carboxylate with phthalic anhydride or phthalic anhydride-d4. All transformation steps proceed with high yields.  相似文献   
27.
The reactions of polyuridylic acid [poly(U)] with Ru(bpy)3(3+) [Ru(III)] and SO4.-, following UV and visible light irradiation of Ru(bpy)3(2+) [Ru(II)] in the presence of S2O8(2-), were studied in an argon-saturated aqueous solution using time-resolved absorption and conductivity methods. The kinetics of the Ru(III) conversion to Ru(II) in the presence of poly(U) was monitored spectroscopically either in the absence of SO4.- [rapid mixing with Ru(III)] or in its presence (after laser flash excitation, lambda exc = 353 nm). The conversion of Ru(III) to Ru(II) is complete at a [nucleotide]/[sensitizer] (N/S) ratio greater than or equal to 10 (rate constant k = 12 s-1) for rapid mixing and at N/S greater than or equal to 6 (k = 15 s-1 at N/S = 10) after laser pulsing. Conductivity measurements following the laser pulse revealed a fast conductivity increase (risetime less than 10 micros), due to the formation of charged species and protons. A slower increase in the 0.1-0.5 s range was observed for poly(U) but it is considerably smaller for poly(dU) and absent in uracil containing monounits. The slow increase is unaffected by pH changes in the 3.5-7 range, markedly reduced in the 7-9 range and is replaced by a slight decrease in conductivity in buffered solutions. An explanation is that poly(U)-bound excited Ru(II) reacts with S2O8(2-) forming Ru(III) and SO4.- as oxidizing species both of which react with poly(U) bases. The resulting base radicals react with Ru(III) or the ligands in the ruthenium complex, producing protons which give rise to the slow conductivity increase (k = 15 s-1 at N/S = 10). The formation of single-strand breaks and the ensuing release of condensed counterions does not appear to contribute significantly to the slow conductivity signal. At N/S less than 10 the observed rate and extent of Ru(III)--Ru(II) conversion and of the slow proton production vary markedly with the N/S ratio.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号